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NOMENCLATURE 

smooth-wall sublayer thickness ; 
AU,lv; 
rough-wall sublayer thickness ; 
ARUJV; 
local skin friction coefficient; 
specific heat of fluid; 
pipe diameter; 
blowing fraction ; 
equivalent sandgrain roughness ; 
fully rough acceleration parameter, 

(rlCi,)l(d%ldx); 
mixing length ; 
1Urlv ; 
molecular Prandtl number; 
wall heat flux; 
radius of spheres comprising test surface; 
pipe radius ; 
roughness Reynolds number, k,U,/v : 
pipe diameter Reynolds number; 
enthalpy thickness Reynolds number ; 
Stanton number; 
fully rough wall temperature step ; 
WT, ; 
mean temperature ; 
wall temperature; 

46lPC,U,i 

* Present adddress: von Karman Institute for Fluid Dy- 
namics, Chauss&s de Waterloo 72, B-1640 Rhode-St-Genese, 
Belgium. 

freestream velocity ; 
friction velocity ; 
velocity of transpired fluid at the wall; 

V&J,; 
coordinate in downstream direction.; 
coordinate normal to surface ; 
I’ U,lv ; 
momentum thickness ; 
Karman constant; 
kinematic viscosity ; 
density. 

INTRODUCTIO\ 

THI: PURPOSE of the present communication is to present a 
closure method for the boundary layer equations which can 
be used to predict Stanton numbers, skin friction coefficients, 
and mean profiles in boundary layers developing over rough 
surfaces. The method is the only published one known to the 
authors for which the combined effects of heat and momen- 
tum transfer with both favourable pressure gradient and 
transpiration may be predicted. Closure is accomplished by 
specification of mixing-length and turbulent Prandtl number 
distributions, along with a wall temperature step. 

Techniques presently available to predict effects of rough- 
ness on turbulent flows are numerous. One of the earliest of 
these incorporating a mixing-length closure was suggested by 
van Driest [ 11. More recently developed methods range from 
the integral techniques of Dvorak [2, 33 to differential 
boundary layer methods such as that suggested by Antonia 
and Wood [4]. Another recent technique is presented by 
Cebeci and Chang [S], who discuss a differential method with 
near wall mixing-length equations based on contributions by 
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Rotta [6]. McDonald and Fish [7] use a correction term 
which accounts for roughness effects in a mixing-length 
model used to predict transition between laminar and 
turbulent flow. Finson [8] also predicts boundary-layer 
transition over rough surfaces, but he uses a Keynolds stress 
closure model. Another high order closure model is presented 
by Adams and Hodge [9], who use an integral form of the 
turbulent kinetic energy equation with a term added to 
represent the generation of turbulence which occurs in the 
wakes behind roughness elements. Hatton and Walklate [lo] 
and Wassel and Mills [1 l] suggest mixing-length models for 
heat transfer in pipes. For transpiration predictions, Schetz 
and Nerney [12] developed methods to predict hydrody- 
namic boundary layers developing over rough surfaces using 
experimental data to extend models described by van Driest 
and by Reichardt. Healzer, Moffat and Kays [13] present a 
method which allows prediction of heat transfer and transpi- 
ration in boundary layers similar to those discussed in this 
work. However, aspects of the Healzer, Moffat and Kays 
closure model are not physically plausible, and the scheme is 
not useful for all of the experimental cases predicted using the 
present model. 

PREDICTION MODEL 

In boundary layers developing over rough surfaces, posi- 
tive transpiration causes the flow to behave as if the 
roughness of the surface is greater than is actually present. 
This effect is evident from the increases in near wall turbul- 
ence levels from transpiration, which result in a less favour- 
able environment for the presence of a viscous sublayer. 
Transpiration has a similar effect on boundary layers de- 
veloping over smooth surfaces, since a primary result of 
blowing is a reduction in effective viscous sublayer thickness. 
The increase in near-wall mixing-length from transpiration 
through rough walls may then be accounted for by increasing 
the effective roughness Reynolds number using 

Re,=Re,(l + 16&J) (1) 

where the function e is empirical with the values e = 1.0 for 
Re, 2 Rek,,, and e = Re JRe,,, for Re, < Re, B Re,,, is the 
value of the roughness Reynolds number which separates 
fully rough from transitionally rough behaviour. 

Following the development of Ligrani, Moffat and Kays 
[14] the near-wall mixing-length equation used for fully 
rough boundary layers with and without transpiration, and 
with and without favourable pressure gradients is then given 
as 

I+ = K yf + 0.0307 (Re, - Re;) (2) 

Expressing Re; as k,U:/v, and the mixing-length in equation 
(2) may be expressed without any explicit viscosity de- 
pendence as 

1+16e>-z !I (3) 
r 7 

The V:/U, term in (3) then provides an implicit viscosity 
dependence for the fully rough mixing-length since viscosity 
influences the value of U, at Re, = Re;. No viscous sublayer 
exists in fully rough flows, however, viscosity may not have a 
completely negligible effect on fully rough hydrodynamic 
behaviour for roughness Reynolds numbers ranging from 
% R to about 200. In equations (l)-(3), Re; and Re,. R are 
constant for a given type of roughness, and are set equal to 
46.0 and 55.0, respectively, for all roughness types considered 
in the present work. Equations (2) and (3) were developed by 
first considering that form drag on roughness elements may 
be represented using a non-zero value of wall mixing-length. 
The dependence of this wall mixing-length offset on k, was 
then determined by equating the velocity profile from this 
mixing-length to the velocity profile equation from 
experiments. 

When Re, is less than Re,, R transitionally rough behaviour 
exists and a viscous sublayer is present. The thickness of this 
viscous sublayer is less than the smooth wall value, but 
greater than the value for fully rough flows, where the 
sublayer is considered to be destroyed. The viscous sublayer 
thickness Ai then decreases in effective magnitude as Re, 
increases above Re,, s the roughness Reynolds number which 
separates transitionally rough behaviour from smooth-wall 
behaviour. The mixing-length for such flows may be modelled 
using the van Driest equation 

[+ = ,,+(I _ e-i+,Ai) 
where the functional dependence of Ai on Re, is given by 

AR’ = A+f (5) 

with 

f= 
In (Re,, R) - In (z,) 

In (R’G, n) - In (Re,, ,) 

for Re,, s < Re, Q Re,, R (64 

f=O forRekzRek,R (6b) 

and 

f=l forRe,<Re,,, (6~) 

Re,, s is strongly dependent on roughness geometry and is set 
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FIG. 1. Prediction of Nikuradse’s [17] pipe skin friction coefficient data. 
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FE. 2. Prediction of Dipprey and Sabersky’s [ 151 pipe heat transfer data 

equal to 7.00, and 15.0 for flows over sandgrain and uniform 
packed spheres roughness, respectively. 

When heat transfer is present in turbulent boundary layers 
which are fully rough, a conduction sublayer is present which 
can be described as a very thin film of fluid surrounding the 
roughness elements, where heat transfer is principally by 
molecular conduction, As the flow becomes transitionally 
rough and smooth, the conduction sublayer becomes less 
important as a viscous sublayer begins to surround the areas 
between and above roughness elements. In the present 
prediction method, the conduction sublayer is modelled using 
a temperature step at the wall given by 

@t 0 )’ = (i -f,kj(Re .)O.*O (Pr)(‘.44 I (7) 
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FIG. 3. Prediction of skin friction coefficients in boundary 
layers developing over uniform spheres roughness. 

where k; = 1.00 for uniform spheres roughness, and k, : 
2.86 for close-packed sandgrain type roughness. For Rr, > 

Re,, R, equation (7) is equivalent to an equation suggested hy 
Dipprey and Sabersky [15], where the non-dimensionalized 
mean roughness height in the original equation is replaced by 

Re, in this study. The turbulent Prandtl number distribution 
used for the present predictions is the same as that suggested 
by Crawford and Kays [16]. However, a constant tubulent 
Prandtl number of 0.90 may also be used instead of this 
equation to give equally good results. 

Additional discussion of the physical arguments and 
derivations of the equations used in the present closure model 
are presented by Ligrani, Moffat and Kays [14]. For 
predictions, the closure equations were incorporated into an 
existing turbulent boundary layer prediction scheme de- 
scribed by Crawford and Kays [16]. 

PREDICTION RESI’LW 

Figures I and 2 show pipe flow predictions of hydro- 
dynamic data from Nikuradse [t7] and heat transfer data 
from Dipprey and Sabersky [15], respectively. In Fig. I. for 
values of R/k, ranging from 15.0 to 126.0, the predictions 
show excellent agreement with the data In Fig. 2, data for 
k,;D = 0.448 at three different values of the rnol~u~r Prandtl 
number over a range of Re, are welt represented by 
predictions. 

Predictions of Stanford rough-wall turbulent boundary 
layer C,!2 and Sr data with and without transpiration are 
shown in Figs. 3 and 4 for a freestream velocity of 27.1 m s I. 
The roughness for these experimental studies (Pimenta. 
Moffat and Kays [18] and Ligrani, Moffat and Kays [14]) 
consists of uniform spheres, where each sphere is 1.27 mm in 
diameter, which is equivalent to a sandgrain roughness height 
of 0.79 mm, The data for both Figs. 3 and 4 show excelfenl 
agreement with predictions. Equally good agreement be- 
tween data and predictions exists at higher fully rough 
velocities. and for lower velocities when the boundary layers 
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FIG. 4. Prediction of Stanton numbers in boundary layers developing over uniform spheres roughness 
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FIG. 5. Prediction of mean temperature profiles in boundary layers developing over uniform spheres 
roughness. 
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FIG. 6. Prediction of Stanton numbers in an accelerated fully 
rough boundary layer developing over uniform spheres 

roughness. 
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FIG. 7. Prediction of Stanton numbers in a fully rough 
boundary layer developing over uniform spheres roughness 
with acceleration, steps in blowing, variable blowing, and a 
wall temperature step. 

are transitionally rough. Fully rough temperature profiles 
with and without blowing are compared with predictions in 
Fig. 5. The quality of the agreement shown in Fig. 5 is the 
same for mean velocity profiles. 

A comparison is made in Fig. 6 between predictions and 
data for a flow over uniform spheres roughness with accele- 
ration (Coleman, Moffat and Kays [19]). The magnitude of 
the fully rough acceleration parameter KR for the flow is 0.29 
x 10-s. In Fig. 7, predictions are compared to measurements 

in a flow over the same type. of roughness with acceleration, 
steps in blowing, variable blowing, and a wall temperature 

step. For both cases, the agreement between the predicted and 
measured Stanton numbers is very good, considering the 
complicated nature of the boundary conditions imposed on 
the flows. 

CONCLUSIONS 

Skin friction coefficients, Stanton numbers, mean velocity 
profiles and mean temperature profiles are predicted for 
boundary layers developing over uniform spheres roughness 
with and without favourable pressure gradient, and with and 
without transpiration. The wall scalar properties are also 
predicted for flow in pipes with closely packed sandgrain type 
roughness. The near-wall mixing-length equation used for the 
predictions is used in conjunction with a wall temperature 
step and a turbulent Prandtl number distribution, along with 
the same mixing-length equations for the outer regions of 
smooth wall boundary layers. 
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KORIEYCLATURE 

c, normalized concentration; 
^ 
C, heat capacity, [J “C kg-‘] ; 
D, mass diffusivity, [m2 s- ‘I; 

k thermal conductivity, [J”Cm-’ 

L, length of slab, [m] ; 
R defined by equation (11); 

r, mass flux, DC’; 

s, defined by equation (12); 
s, location of the phase front: 

$9 time variable, [s] ; 

>. 
temperature, c”C] ; 
interface temperature, PC] ; 

u, heat flux, ku’; 
w, defined by equation (13); 

X, length variable, [m] ; 
z, defined by equation (14). 

Greek symbols 

a, boundary temperature, c”C] ; 
ct, boundary concentration; 

At, time step, [s] ; 
4 heat of fusion, [J kg-‘] ; 
P3 mass density, [kgm-3]. 

Subscripts 

+, indicates liquid phase ; 
-3 indicates solid phase ; 

s-1-j; 

0. indicates initial time; 
II- 1, indicates time level n - 1 

Superscripts 

didx 

1. IiXTRODbCI‘IOL 

IT IS the purpose of this communication to introduce a 
numerical method for the solidification of a one-dimensional 
binary alloy. The method is a straightforward extension of the 
technique described in [4] for the two-phase Stefan problem. 
It is applied to the heat and mass balance equations and 
specifically tracks the phase front. The method has several 
useful features : 

(1) It applies to the primary variables of temperature dnd 
solute concentration. 

(2) It permits solute diffusion both in the liquid and solid 
phase. 

(3) General phase diagrams are acceptable for the 
liquid-solid phase change. 

(4) The method is applicable to systems with heat and 
concentration dependent diffusion parameters. 

(5) The method is time implicit and can cope with 
discontinuous systems as well as with the vast11 
different time constants for the heat and mass dif- 
fusion. Last, but not least the method is straightfor- 
ward to implement and cheap to run. 


